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Abstract

Objective: This study examined whether body shape and composition obtained by

three-dimensional optical (3DO) scanning improved the prediction of metabolic syn-

drome (MetS) prevalence compared with BMI and demographics.

Methods: A diverse ambulatory adult population underwent whole-body 3DO scanning,

blood tests, manual anthropometrics, and blood pressure assessment in the Shape Up!

Adults study. MetS prevalence was evaluated based on 2005 National Cholesterol Edu-

cation Program criteria, and prediction of MetS involved logistic regression to assess (1)

BMI, (2) demographics-adjusted BMI, (3) 85 3DO anthropometry and body composition

measures, and (4) BMI + 3DO + demographics models. Receiver operating characteris-

tic area under the curve (AUC) values were generated for each predictive model.

Results: A total of 501 participants (280 female) were recruited, with 87 meeting the

criteria for MetS. Compared with the BMI model (AUC = 0.819), inclusion of age,

sex, and race increased the AUC to 0.861, and inclusion of 3DO measures further

increased the AUC to 0.917. The overall integrated discrimination improvement

between the 3DO + demographics and the BMI model was 0.290 (p < 0.0001) with

a net reclassification improvement of 0.214 (p < 0.0001).

Conclusions: Body shape measures from an accessible 3DO scan, adjusted for demo-

graphics, predicted MetS better than demographics and/or BMI alone. Risk classifica-

tion in this population increased by 29% when using 3DO scanning.

INTRODUCTION

Noncommunicable diseases and related conditions such as

metabolic syndrome (MetS) continue to grow in prevalence, with

prevalence reaching one-third of the adult population in countries

such as the United States and Spain [1, 2]. Individuals diagnosed

with MetS have a five times greater risk of developing diabetes

and a three times greater risk of cardiovascular disease (CVD)

[3, 4]. As rates of MetS increase, staging of disease risk in children

and adults can aid in identifying factors contributing to increasing

disease risk [5]. Monitoring the underlying risk factors associated

with changes in metabolic status also remains a cornerstone of

routine clinical practice in an effort to reduce lifetime health care

expenditures [6].
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MetS is a cluster of clinical findings that reflect overnutrition, sed-

entary lifestyle, and excess adiposity [7]. Specifically, MetS is defined

as possessing three or more directionally unhealthy measures, includ-

ing waist circumference (WC), plasma triglycerides, blood pressure

(BP), fasting blood glucose, and highdensity lipoprotein (HDL) choles-

terol. These clinically accessible measures are linked with underlying

risk factors that promote coronary heart disease, CVD, and all-cause

mortality [7, 8]. Whereas each of these measures is independently

associated with a variety of adverse health outcomes, including CVD

and cancers, each additional risk factor is also associated with a 24%

increase in health care costs [4, 9]. Owing to the fact that metabolic

dysregulation occurs over time, the ability to monitor and treat symp-

toms related to MetS is necessary to reduce the overall health care

burden [8].

BMI, a measure of body weight for size, serves as an indirect esti-

mation of body fatness closely tied to each metabolic risk factor. As a

predictor of MetS, increasing BMI is directly related to disease risk in

adults with normal weight and adults who have overweight [5]. How-

ever, BMI cannot differentiate the weight of fat mass and fat-free

mass, with both muscle and fat having an important role in disease

risk [10, 11]. These limitations in the predictive ability of BMI mean

that those with higher muscle mass or normal weight obesity (normal

BMI with low muscle and high fat mass) may be inappropriately evalu-

ated for disease risk [12, 13]. For example, 30% of people with obesity

are metabolically healthy, whereas a recent analysis of National

Health and Nutrition Examination Survey (NHANES) data showed that

8.6% of adults in the normal weight category have MetS [14, 15]. BMI

is also limited in that it is not representative of overall body fatness

across age (in children and adults), sex, and ethnicity, meaning that

specific cut points for disease-risk identification are limited [16, 17].

Body shape and body composition are increasingly being linked to

obesity-related metabolic risk [18]. Body shape change, often measured

via anthropometric WC or waist-hip ratio (WHR), reflects alterations in

total and regional fat and muscle, with these shape factors being linked

to vascular aging and risk of diabetes and mortality [19, 20]. These

markers of fat and tissue distribution, with further emphasis on central

obesity, can now be captured noninvasively, with much greater fre-

quency, using three-dimensional optical (3DO) imaging scanners in indi-

viduals of all ages, provided that they are capable of standing in the

required pose for the duration of the test [21, 22]. 3DO scanners are

also capable of quickly capturing these anthropometrics along with

additional body shape (volumes and circumferences) and composition

(fat-free mass, fat mass, visceral fat mass) metrics that are also linked to

MetS risk [10, 20, 23]. Ng et al. [24] showed the ability for 3DO body

shape by principal components analysis to predict serum lipid and dia-

betes markers, whereas a recent meta-analysis highlighted the impact

of markers of central fatness, such as WC being associated with higher

all-cause mortality risk [25].

Given the relative affordability and convenience of 3DO scanning

for body composition assessment, rapid expansion of this technology

has occurred in clinical practice [23]. With its ease of use and ability

to track body composition trajectories with repeated measurements,

these tools have the potential to inform patient education regarding

disease risk and aid medical professionals in mitigating risk. With an

increasing number of shape and composition features being individu-

ally linked to disease risk, it is of interest to explore whether the com-

bination of these features can improve the prediction of MetS risk

over anthropometry or demographics alone. However, we are

unaware of any studies looking at the ability for 3DO measures of

body shape and body composition to improve the prediction of MetS.

The current study aims to explore the ability for 3DO, without the

need for manual measurements or the use of more expensive clinical

measurement methods, to improve MetS identification in comparison

with BMI in routine clinical practice. We hypothesize that the combi-

nation of measures obtained from a 3DO scan can improve the pre-

diction of MetS over BMI or anthropometry.

METHODS

Overview

We performed a cross-sectional analysis to determine how body

shape and body composition, as reported by 3DO, predicted MetS

status in a healthy and diverse cohort of adults. Details of the entire

protocol can be found in Ng et al. [24], and they are briefly described

in this paper. Participants received criterion measures for MetS as

Study Importance

What is already known?

• Metabolic abnormalities can occur in individuals with nor-

mal weight, whereas some individuals who have over-

weight do not meet the criteria for metabolic syndrome

(MetS), highlighting the limitations of using BMI for

disease-risk identification.

• Body shape features, as measured through three-dimen-

sional optical (3DO) body scans, correlate to serum lipid

markers linked to MetS.

What does this study add?

• Body shape and composition from 3DO scans improve

the modeling of MetS over BMI and demographics. The

prediction model successfully identifies individuals with

normal weight with MetS and improves identification of

individuals who have overweight without MetS.

How might these results change the direction of

research or the focus of clinical practice?

• Accessible optical body shape and composition scans can

improve clinical detection of MetS and aid in clinical guid-

ance of disease risk or management.
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well as exploratory measures using a commercial 3DO system.

Models with and without the 3DO measures were created to explore

the relationship between the >80 circumferences, regional and whole-

body volumes, and body composition variables and MetS. To assess

the impact of body shape and composition variables on disease risk,

models were compared using logistic regression and areas under the

receiver operating characteristic (ROC) curves.

Participants

Participants were recruited as part of the Shape Up! Adults cohort at

University of Hawaii Cancer Center in Honolulu, University of California,

San Francisco (UCSF), and Pennington Biomedical Research Center in

Baton Rouge, Louisiana, between October 2016 and January 2020.

Shape Up! Adults (NIH R01 DK109008, ClinicalTrials.gov identifier

NCT03637855) is a cross-sectional sample of healthy adults with the

goal to represent the breadth of body shape in the US population. The

recruitment goals were for equal cells by age (18-40 years, 40-60 years,

>60 years), ethnicity, and BMI (weight in kilograms divided by height in

meters squared; <20, 20-24.9, 25-30, >30). Participants were excluded if

they could not stand for 2 minutes without aid or if they had significant

body shape-altering procedures (e.g., liposuction, amputations, breast

augmentation or reduction). Female participants were also excluded if

pregnant or breastfeeding. The study protocols were approved by insti-

tutional review boards at all sites, and participants provided written

informed consent.

Anthropometric measurements

Anthropometry was measured using the NHANES protocol [26].

Height and mass to the nearest 0.1 cm and 0.1 kg was measured

using a stadiometer and digital scale (Seca GmbH). Flexible measuring

tapes were used to collect WC. WC measurements were taken using

marks placed on the top of the iliac crest as reference while the partic-

ipant stood up straight with their arms crossed. Measurements were

recorded in triplicate to the nearest 0.1 cm and averaged. Although

WC was measured and used in the MetS diagnosis, the aim was to

explore the use of variables measured via 3DO, including 3DO WC, to

improve the prediction of MetS. This allowed for the investigation of

this simplified approach of 3DO and readily available demographic

data, although we also explored the prediction of MetS using demo-

graphics and anthropometric WC (data not shown).

Blood measurements

Blood samples were collected from participants after an overnight

fast. Biochemical analysis was performed at Pennington Biomedical

Research Center. Measurements included serum triglycerides, fasting

glucose, and HDL cholesterol. Systolic and diastolic BP were mea-

sured by a certified technologist in a seated position after

5-minute rest.

3DO scans

3DO scans were obtained using a commercial scanner comprised of a

single depth camera incorporated into a sensor tower that stands approxi-

mately 6 feet in front of a rotating platform (S100 Body Scanner, Styku

LLC, software version 4.1, using “Styku Advanced Phoenix Model for

Body Composition” setting). Participants wore form-fitting shorts (female

participants wore a sports bra) and a swim cap and stood on the turntable

with legs separated, arms away from the body at a 45-degree angle, and

hands closed into fists as recommended by the manufacturer. Each scan

T AB L E 1 Participant characteristics (n = 501 [280 female])

Variable Male (n = 221), mean (SD) Female (n = 280), mean (SD)

Total (n = 501)

Mean (SD) Min. Max.

Age (y) 45.0 (16.6) 46.7 (16.2) 46.2 (16.5) 18.0 89.0

Height (cm) 175.3 (8.0) 162.7 (6.4) 167.7 (10.0) 144.1 202.1

Weight (kg) 86.0 (21.0) 73.5 (21.6) 77.8 (22.2) 35.4 173.5

BMI (kg/m2) 27.9 (6.2) 27.8 (8.0) 27.5 (7.0) 14.2 52.6

3DO PBF (%) 20.8 (6.5) 31.0 (7.9) 26.2 (8.9) 2.0 48.0

Ethnicity Count MetS+a Count MetS+a Count % MetS+a

Asian 46 6 65 16 111 22.2 22

NH Black 63 8 68 5 131 26.1 13

Hispanic 30 2 39 5 69 13.8 7

NHOPI 17 6 27 10 44 8.8 16

NH White 65 11 81 18 146 29.1 29

Note: Percentage values are rounded.

Abbreviations: 3DO, three-dimensional optical; PBF, percentage body fat; MetS, metabolic syndrome; NH, non-Hispanic; NHOPI, native Hawaiian or

Pacific Islander.
aMetS positive (+) using National Cholesterol Education Program Adult Treatment Panel III criteria.
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took 30 to 40 seconds to complete. The reports include 65 whole-body

and segmental surface areas, volumes, and circumferences, along with

three circumference ratios. Seventeen body composition estimates are

also derived from these measures using proprietary algorithms built into

the system software. Bennett et al. [23] described the accuracy (Lin’s con-

cordance correlation coefficient, CCC) and precision (coefficient of varia-

tion, CV) of fat and fat-free mass (CCC > 0.95; CV < 1.94%), whole-body

volume (CCC = 0.99; CV = 1.45%), and circumference measurements

(CCC > 0.97; CV < 0.63%) in a sample of adults (age 18-89 years) strati-

fied by BMI and ethnicity [23]. With the 3DO shown to be accurate com-

pared with criterion measures for body composition and anthropometry,

we aimed to use the 3DO variables exclusively as a simplified assessment

technique to improve the prediction of MetS.

MetS

MetS was defined using the 2005 National Cholesterol Education

Program Adult Treatment Panel III (NCEP ATP III) guidelines as having

≥3 of the following: high WC (as measured by manual anthropometry;

≥102 cm in men, ≥88 cm in women), elevated triglycerides (≥150 mg/

dL), elevated BP (≥130 mm Hg systolic or ≥85 mm Hg diastolic), ele-

vated fasting glucose (≥100 mg/dL), and/or reduced HDL cholesterol

(<40 mg/dL in men, <50 mg/dL in women) [8]. For individuals with

missing data points, presence or absence of MetS was defined if at

least three of the available variables were met or if they were less

T AB L E 2 Prediction equations derived using logistic regression to predict MetS

Model Name Test variables AUC Equationa

1 BMI BMI 0.819 �5.768 + 0.143 � BMI

2 BMI + demographics BMI, age, race, sex 0.861 �9.643 + 0.177 � *BMI + 0.059 � Age � 0.059 � NH Black

+1.159 � NHOPI

3 3DO 3DO 0.889 �12.583 + 0.073 � 3DO Body Fat Percentage + 0.009

� 3DO Chest Volume � 0.046 � 3DO Left Arm

Area + 0.025 � 3DO Left Arm Volume + 14.516 � 3DO

WHR

4 BMI + demographics + 3DO BMI, age, race, sex, 3DO 0.917 �17.328 + 0.192 � BMI + 0.033 �
Age + 1.569*Sex � 1.131 � NH Black + 0.986 �
NHOPI � 1.061 � 3DO Bone Mass Percentage � 0.015

� 3DO Left Calf Volume � 0.157 � 3DO WC + 19.887

� 3DO WHR

Note: Where sex (male = 0, female = 1); NH Black (all other = 0, NH Black = 1); NHOPI (all other = 0, NHOPI = 1).

Abbreviations: 3DO, three-dimensional optical; MetS, metabolic syndrome; NH, non-Hispanic; NHOPI, native Hawaiian or Pacific Islander; WC, waist

circumference; WHR, waist-hip ratio.
aProbability of MetS calculated using = 1

1þexp� equationð Þ :

T AB L E 3 Variables included in BMI + demographics + 3DO
MetS prediction model (model 4) compared with BMI models (models
1 and 2)

AUC
AUC
improvement

BMI (model 1) 0.819

BMI + demographics (model 2) 0.042

3DO WHR 0.022

3DO bone mass percentage 0.006

3DO WC 0.006

3DO calf volume (left) 0.004

BMI + demographics + 3DO (model 4) 0.917

Abbreviations: 3DO, three-dimensional optical; AUC, area under the

curve; WC, waist circumference; WHR, waist-hip ratio.

F I G U R E 1 Stepwise receiver operating characteristic (ROC)
curves for MetS prediction. 3DO, three-dimensional optical scan
variables [Color figure can be viewed at wileyonlinelibrary.com]
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than the criteria for diagnosis, respectively. Individuals with four avail-

able measures, with two variables above and two variables below the

cut points, were excluded from the data set because of insufficient

data to make an accurate diagnosis.

Statistical methods

Logistic regression was performed to create the following models to pre-

dict MetS: BMI (model 1), BMI + demographics (age + sex + race;

model 2), 3DO body shape variables (model 3), and model 2 + model

3 (BMI + demographics + 3DO; model 4). Selection of 3DO variables in

model 3 and model 4 was performed using step forward logistic regres-

sion (proc LOGISTIC with stepwise option, SAS Institute Inc.). Variables

were selected if they were significantly associated to MetS (p < 0.10)

and kept in the final model if their significance was p < 0.05 to ensure

the optimum fit while limiting risk of model overfitting. An ROC curve

with its associated area under the curve (AUC) and concordance index

measures were generated for each model. To determine the appropriate

cut point, the highest Youden index (sensitivity + specificity � 1) was

calculated [27]. Integrated discrimination improvement (IDI) was used to

visualize the separate improvements in sensitivity and specificity

between model 1 and model 4 [28]. Net reclassification index (NRI) was

computed with 1,000 rounds of bootstrapping for specific cut points in

the prediction probability [28]. The model 4 MetS prediction equation

was used to generate AUC values for each of the individual MetS blood

parameter cutoffs. Statistical analysis was performed using SAS version

9.4 (SAS Institute) and Scitkit Learn (Python Software 3.10).

RESULTS

A total of 619 adults were available for this study. Of this sample,

3DO scans were missing for 105 participants (owing to the later inclu-

sion of the 3DO scanner into the study protocol), and, of the

remaining participants, 12 did not have serum markers available to

make a diagnosis. See the Consolidated Standards of Reporting Trials

F I GU R E 2 IDI and NRI for MetS prediction when comparing
model 4 with model 1. The integrated sensitivity (IS), black shaded
region, indicates the change in sensitivity model 4 compared with
model 1 across all risk thresholds. The integrated 1-specificity (IP), red
shaded region, indicates the change in specificity with the addition of
the 3DO model. Using a threshold of 0.147, model 4 was able to
identify 9% more MetS positive individuals than model 1. The IDI is
the sum of the IS and IP and the positive IDI indicates that predictive
models benefit from the addition of 3DO. NRI are presented for
prediction of MetS (black) and non-events (red). 3DO, three-
dimensional optical; IDI, integrated discrimination improvement;

MetS, metabolic syndrome; NRI, net reclassification index [Color
figure can be viewed at wileyonlinelibrary.com]

T AB L E 4 Confusion matrix of prediction model using optimal
cutoff by minimizing difference between sensitivity and specificity

MetS+ MetS�
Predicted + 78 65

Predicted � 9 349

Total 87 414 501

Note: MetS+ is diagnosed as MetS positive by National Cholesterol

Education Program Adult Treatment Panel III (criterion measure).

Abbreviation: MetS, metabolic syndrome.

F I G U R E 3 Stepwise receiver operating characteristic (ROC)

curves for individual blood markers. AUC, area under the curve [Color
figure can be viewed at wileyonlinelibrary.com]
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(CONSORT; Supporting Information Figure S1) flowchart and

Strengthening the Reporting of Observational studies in Epidemiology

(STROBE; Supporting Information Figure S2) checklist for further

details of exclusions. After these exclusions, 501 participants had

3DO scans and available parameters. Of those, 87 (17.4% of the total

population) met the criteria for MetS. Individuals with MetS tended to

be older and female and to have a higher BMI, WC, and percentage

body fat (all p < 0.05). Summary characteristics and participant counts

by ethnicity are presented in Table 1.

Each model is presented in Table 2, which shows the progressive

AUC improvement with each model. A total of eight variables (four

3DO variables) were included in model 4. The contribution of each

variable to the AUC is shown in Table 3. Overall, WHR (AUC improve-

ment of 0.022) showed the greatest improvement.

F I GU R E 4 Sample images of MetS positive (+) versus negative (�) participants. Example 1: similar BMI (normal), higher PBF, WC, and WHR
in MetS+. Example 2: same BMI (normal), higher PBF in MetS� but greater WC and WHR in MetS+. Example 3: same BMI (overweight),
different PBF with greater WC and WHR in MetS+. Example 4: same WC, greater WHR in MetS+. MetS, metabolic syndrome; PBF, percentage
body fat; WC, waist circumference; WHR, waist-hip ratio; 3DO, three-dimensional optical; NH, non-Hispanic; NHOPI, native Hawaiian or Pacific
Islander [Color figure can be viewed at wileyonlinelibrary.com]
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The ROC curves for each model are presented in Figure 1. We

found a progressive improvement in the AUC values from model

1 (AUC = 0.819, 95% CI: 0.775-0.862) to model 4 (AUC = 0.917,

95% CI: 0.889-0.945). The combination of BMI and demographic vari-

ables with 3DO scans (model 4) made for the best model with high

discriminatory power, as shown in Table 2.

The results of the IDI curve comparing the final BMI +

demographics + 3DO model (model 4) with the BMI-only model (model

1) are presented in Figure 2. Adding the additional variables used in

model 4 resulted in an average predicted probability of MetS increase

of 71.8% and a 31.7% decrease in average predicted probability of

nonevents. Overall, the model increased the IDI by 26.0% (95% CI:

23.5%-34.5%, p < 0.0001) and NRI by 19.4% (95% CI: 2.8%-40.0%,

p < 0.0001).

The optimal cutoff used to derive a confusion matrix of results,

presented in Table 4, showed that 78 (89.7%) of the 87 positive

cases (MetS+) were correctly identified. Of the negative cases

(MetS�), 349 (84.3%) of the 414 cases were properly classified.

Importantly, this cutoff correctly identified all seven normal BMI

MetS+ participants. Model 4 also improved prediction of MetS com-

pared with a demographics + anthropometric WC (AUC = 0.888,

95% CI: 0.804-0.906; data not shown). Furthermore, the

demographics + anthropometric WC model successfully predicted

only two of the seven normal BMI MetS+ participants and failed to

capture eleven of the high BMI MetS� participants, highlighting the

significance of the 3DO system over a simplified WC assessment to

identify disease risk.

Using the prediction equation generated by model 4, we examined

the relationship to each individual blood parameter cutoff used in MetS

diagnosis, presented in Figure 3. Generated AUC values for each blood

parameter ranged from 0.702 for BP to 0.820 for blood triglycerides,

ranging from acceptable to excellent [29]. In addition, we examined the

relationship of model 4 to each individual blood parameter used in

MetS diagnosis, presented in Supporting Information Table S1. We also

included a correlation matrix for each 3DO measurement variable and

MetS blood parameter in Supporting Information Figure S3.

In Figure 4, we matched MetS+ and MetS� participants with

similar characteristics to highlight how shape and composition more

accurately reflected disease risk and diagnosis.

DISCUSSION

The purpose of the present study was to evaluate potential improve-

ments in MetS prediction by incorporating demographic, body shape,

and body composition parameters, easily obtained using clinically

accessible 3DO technology. We found that our model resulted in a

significant improvement in the prediction of MetS, further highlighting

the importance of body shape and composition in disease prediction.

Furthermore, we confirmed our hypothesis that the combination of

measures obtained from a 3DO scan provided a better diagnostic

compared with simpler models or individual measurements.

A meta-analysis performed by Lee [30] showed that obesity was

associated with a 62% greater MetS risk (risk ratio = 1.62, 95% CI:

1.32-1.98; p < 0.01), regardless of cardiovascular fitness level [30].

Body shape, as assessed by WC (a surrogate for abdominal obesity)

and trunk to hip volume ratio (a surrogate for regional adiposity), has

been shown to be an important metric for understanding the distribu-

tion of adipose tissue related to MetS disease risk [20, 25, 31]. The

results of our study showed that both body composition and body

shape parameters can provide valuable information regarding disease

risk. WHR, an indirect marker of both abdominal and regional obesity,

better predicted MetS risk compared with WC, which is consistent

with findings of other studies that have looked at body shape and

MetS risk [32–35]. Whereas WC is considered to be a strong predic-

tor of MetS risk, WHR may better reflect adipose tissue storage in the

gluteal subcutaneous region, which may be protective of MetS risk

[34]. Our study showed that WC had an inverse association to MetS

risk. Given the larger impact of the WHR on prediction risk, we

believe the negative association observed may be a correction to

address individuals with a high BMI who do not have MetS and, there-

fore, that it further highlights the benefits of body shape over BMI or

WC assessment [35].

Body composition has a clear association with MetS risk [10, 14].

The 3DO model found two body composition variables to be predic-

tive of MetS risk. Calf circumference, an indirect measure of muscle

mass that is less affected by fat deposition, was associated with MetS

risk using NHANES data sets [33]. We believe that the average calf

volume reflects the leg musculature and, therefore, serves as a protec-

tive factor for MetS risk. Whereas bone mass is linked to MetS, the

causal direction between these factors remains unclear [36]. There-

fore, while low bone mass may be an independent predictor of MetS

risk, a low proportion of body weight as bone mass may also reflect

increased adiposity, a clear predictor of MetS risk [4]. This finding was

supported by the strong positive correlation of bone mass percentage

to lean mass percentage and strong negative correlation to body fat

percentage (Supporting Information Figure S3).

Previous studies have explored the use of body composition by

bioimpedance for the prediction of MetS; however, this method is

unable to derive body shape measurements that reflect adipose tissue

distribution and predict disease risk [32, 37]. Researchers have

explored the utility of body shape using dual-energy x-ray absorpti-

ometry; however, this technology is not accessible or cost-effective

to be used for routine diagnostic purposes [20]. 3DO measures have

added benefits for clinical practice by reducing measurement bias

associated with manual anthropometry and providing rapid access to

body composition and shape data. Given that these measures are low

cost, easily accessible, and associated with disease risk, these findings

support the use of 3DO measures as a novel and feasible approach

for routine clinical risk assessment.

Body shape measures of WC have long been linked to visceral adi-

posity; WC has been validated using 3DO scanners previously [21,

22, 24]. In relation to blood, Jaeschke et al. [38] found that 3DO mea-

sures of WC were significantly associated with MetS blood parameters
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[38]. Ng et al. [24] showed the relationship of principal components of

3DO scans and their individual relationships to blood metabolites [24].

Whereas these studies examined the relationship of body shape to indi-

vidual blood parameters, our study was the first, to our knowledge, to

examine disease risk by 3DO. The results showed that the final body

shape and composition model as derived from 3DO (model 4) had a sig-

nificant (all p < 0.05) relationship to MetS risk, as well as each MetS

blood parameter, showing that 3DO is a useful metric to reflect adipose

distribution and its relationship to blood markers and overall disease risk.

Because parameters of MetS can occur independently, it is impor-

tant to develop metrics that are useful to evaluate the risk of disease

in individuals with high weight as well as individuals with normal

weight. Our study found that all seven individuals (4.7% of the

normal-weight population, slightly below the 8.6% observed in the

NHANES sample) with a normal BMI were properly identified as

MetS+ using the derived model. Similarly, 201 of the 222 (90.5%) par-

ticipants defined by BMI as possessing excess weight were correctly

classified as MetS� using the final 3DO model. Owing to the fact that

metabolic dysregulation develops over time, the ability to monitor

progress is essential for guiding education and awareness as a strategy

toward disease prevention [39]. As seen in the sample participant

images, use of both body shape and composition can improve MetS

modeling when compared between individuals. Furthermore, these

images provide clinicians with easily accessible body shape images

that can be used to educate patients on their current body composi-

tion, whereas tracking this information over time can serve as a

potent indicator of change in disease risk for both the patient and cli-

nician. Use of this information and the visuals provided by the 3DO

system will allow medical professionals to monitor change over time,

an essential aspect of monitoring disease risk [39].

A strength of this study is that it used a diverse sample of adults

of varying age, ethnicity, and BMI. The range of BMI values included

is significant, as our sample included a strong sample of individuals

with underweight, normal weight, and overweight/obesity. We also

show the importance of age and gender adjustment and their impor-

tance in MetS diagnosis [40]. Owing to the relatively small sample of

participants with MetS (n = 87), we were unable to separate training

and test sets to examine the accuracy of our prediction model. That

said, our sample (n = 501) was well above the amount required to

detect differences between AUC values with a 95% probability

(n = 58) [41]. Given the cross-sectional nature of the study, we were

unable to examine the changes in body shape and their association

with change in MetS risk, nor was our model able to tease out the

impact of factors such as vitamin D and exercise on MetS risk [42,

43]. The review by Lee [30] shows the importance of cardiovascular

fitness in the prevention of MetS [30]. However, because these indi-

viduals met the NCEP ATP III criteria for MetS, we believe the applica-

tion of these findings remain, regardless of physical activity level.

It should be noted that, whereas 3DO systems are increasingly

being used in clinical and field settings, their adoption in clinical prac-

tice is not universal, and access to 3DO technology may be limited in

certain settings [23]. Although the WC + anthropometric model

increased the AUC compared with model 1, the proper identification

of 16 individuals of the 3DO model 4 compared to a WC assessment

further highlights the importance of other body shape variables as sig-

nificant predictors of MetS disease risk. Given the increased reliability

from the automated 3DO system, we believe the advantages noted

earlier warrant the use of these systems when available. That said, we

also included the BMI + demographics model for clinicians to use

when 3DO scanning is unavailable.

Finally, the cutoffs for MetS continue to be debated based on a

variety of factors, including body size, race/ethnicity, and cutoffs

selected. For example, male patients can develop multiple metabolic

risk factors when WC is only marginally elevated (94-102 cm) [8].

Given the criteria used by the NCEP ATP III, which focuses on MetS

instead of focusing on obesity or insulin resistance being the primary

cause of CVD, as well as the common use of these criteria, we believe

this to be a strength of our study in our target population. That said,

without including population-specific cut points such as those

included in the International Diabetes Foundation criteria, the gener-

alizability of these results to non-American populations is limited [44].

Further work should explore the predictive ability of these models in

different populations to identify where the proposed model may be

improved or identify limitations in the model based on the issues

related to MetS risk discussed earlier. This work could also be

expanded to youth populations in future works, as the rapid change in

body size, shape, and composition may pose valuable information

regarding changes to disease risk over time. Future studies should also

look at the ability for 3DO to track body composition and shape

changes longitudinally and their associations to MetS risk [45]. Pro-

spective studies regarding MetS prediction over time, along with a

greater understanding of how the information provided to patients

informs clinical decision-making using this technology, will further

improve the application of this technology as a tool for disease pre-

vention and treatment. Monitoring the role of diet and exercise in the

progression of MetS disease risk may also improve the application of

3DO technology in clinical practice.

CONCLUSION

Our results confirm the findings of previous studies examining the link

between body shape and composition with MetS disease risk. By

building a prediction model with better predictive power, we show

the usefulness of a 3DO scanner for routine clinical practice in the

assessment of MetS disease risk that is accessible, noninvasive, and

cost-effective.O
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